Physics is perhaps the most fundamental of the sciences. It involves the study of the nature of basic things such as motion, forces, energy, matter, heat, sound, light, and the atom. Engineering is the profession in which basic knowledge from mathematical and natural sciences is applied to develop new ways to utilize the materials and forces of nature for the benefit of society.

Engineering physics is an interdisciplinary degree program combining the study of physics and engineering into one curriculum. Students acquire a thorough knowledge of physical and mathematical principles and also learn how to apply this knowledge to meet the needs of society. The interdisciplinary nature of this program produces graduates who can work in diversified fields and who can easily adapt their skills to the needs of their employers.

The engineering physics program is an engineering program that is accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org, which is the agency that accredits all engineering programs in the United States. Our seniors take the Fundamentals of Engineering (FE) Exam, which is the first step to becoming a Registered Professional Engineer (PE). About 85% of our seniors pass this exam, which is well above the national average.

Engineering Physics students will...

- Obtain a thorough understanding of the fundamental principles of science and mathematics underlying engineering and be able to apply them to meet the needs of society.
- Have the ability to design a system, component or process to meet needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
- Use the techniques, skills, and modern tools necessary for physics and engineering careers.
- Have the broad education to understand the impact of physics and engineering solutions in a global, economic, environmental, and societal context.
- Be prepared to pass the FE Exam.

Career Planning

All graduates find employment in their field or start the graduate programs of their choice within a few months of graduation.

Internship and Employment Opportunities of Recent Graduates

- Century Link Technology Solutions
- National Information Solutions Cooperative
- TG Missouri
- Schaefer’s electrical Enclosures
- Southeast Missouri State University
- Southeast Hospital
- BIS Industrial Services
- Honeywell F M & T
- Lighting Science Group Corporation
- Wright Patterson Air Force Base
- Boeing
- Lockheed Martin
- NASA
- National Geospatial Intelligence Agency
- Raytheon
- Rockwell Collins
- GeoEye, Inc.

Graduate Schools and Programs of Recent Graduates

- University of Arkansas – MicroEP Program
- Washington University – Physics
- University of Missouri – Aerospace Engineering
- University of Missouri – Physics
- Boise State university – Biomedical Engineering
- University of Kansas – Biomedical Engineering
- Southern Illinois University – Edwardsville
- University of North Texas – Physics

Admission Requirements

A high school student interested in majoring in Engineering Physics should complete four years of mathematics that includes trigonometry and an introduction to calculus. Four years of science, which includes both chemistry and physics is highly recommended. A strong background in English is essential.

To learn more
Office of Admissions
(573) 651-2590
admissions@semo.edu
www.semo.edu

To explore the College of Science, Technology, and Agriculture online, visit http://www.semo.edu/costa

For advising
College of Science, Technology, and Agriculture Advising Center (573) 651-5930
costaadvising@semo.edu

Demonstrated Career Proficiency is a Requirement of all Southeast Students

<table>
<thead>
<tr>
<th>CL001/CL002</th>
<th>First Semester</th>
<th>Complete the FOCUS2 assessment and develop a Career Action Plan.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL003</td>
<td>Junior Year</td>
<td>Students gain information about career planning and job searching resources.</td>
</tr>
<tr>
<td>CL004</td>
<td>Senior Year</td>
<td>Students demonstrate advanced proficiency by identifying a position in their field, developing a cover letter, and tailoring a resume for the position. Materials are critiqued to ensure preparedness for a successful job search.</td>
</tr>
</tbody>
</table>

Career Services, located in Academic Hall 057, provides professional career advising to guide students in their career development.

Toad of Science, Technology, and Agriculture
This is a guide based on the 2014-2015 Undergraduate Bulletin and is subject to change. The time it takes to earn a degree will vary based on several factors such as dual enrollment, remediation, and summer enrollment. Students will meet with an academic advisor each semester and use DegreeWorks to monitor their individual progress.

CURRICULUM CHECKLIST

Engineering Physics: Mechanical Applications – 61 hours
A grade of ‘C’ or better is required in each course that is a prerequisite course.

- **EP100** Physics and Engineering Concepts (1)
- **EP240** Circuit Analysis (4)
- **EP261** Engineering Mechanics - Statics (3)
- **EP262** Engineering Mechanics - Dynamics (3)
- **EP340** Electronic Circuits (4)
- **EP372** Signals and Systems (3)
- **EP380** Engineering Design and Research (1)
- **EP480** Capstone Design (1)
- **PH230/030** General Physics I (5)
- **PH231/031** General Physics II (5)
- **PH360** Modern Physics (3)
- **PH371** Electromagnetics (3)
- **UI330** Experimental Methods (3)
- **UI450** Capstone Experience (3)

Mechanical Applications Option:
- **EP263** Mechanics of Materials (4)
- **EP361** Thermal Analysis (3)
- **EP363** Thermal Fluid Engineering (3)
- **EP374** Control Systems (3)
- **EP462** Materials Science (3)

Support Courses:
A grade of ‘C’ or better is required in each course that is a prerequisite course. This sequence of mathematics courses constitutes a minor, but it must be declared.

- **CH185/085/005** General Chemistry (5)
- **CS177** Programming for Scientists and Engineers (3)
- **MA140** Analytic Geometry and Calculus I (4)
- **MA240** Analytic Geometry and Calculus II (4)
- **MA245** Vector Calculus (2)
- **MA345** Linear Algebra (3)
- **MA350** Differential Equations (3)
- **MN120** Fundamentals of the Engineering Design Process (3)

University Studies Requirements (not already listed above):
- **UI100** First Year Seminar, **EN100** English Composition, **Artistic Expression**, **Written Expression**, **Oral Expression**, **Literary Expression**, **Economic Systems**, **Political Systems**, **Social Systems**, and one IU/UI3XX

SAMPLE FOUR-YEAR PLAN

Engineering Physics: Mechanical Applications

- **Fall Semester**
 - **Course #**
 - **Hrs**
 - **Course #**
 - **Hrs**

- **Spring Semester**
 - **Course #**
 - **Hrs**
 - **Course #**
 - **Hrs**

FIRST YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Hrs</th>
<th>Course</th>
<th>Hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>UI100</td>
<td>3</td>
<td>EN100</td>
<td>3</td>
</tr>
<tr>
<td>CH185/085/005</td>
<td>5</td>
<td>MA145</td>
<td>4</td>
</tr>
<tr>
<td>CS177</td>
<td>3</td>
<td>MN120</td>
<td>3</td>
</tr>
<tr>
<td>EP100</td>
<td>1</td>
<td>PH230/030</td>
<td>5</td>
</tr>
<tr>
<td>MA140</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total 17 15

SECOND YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Hrs</th>
<th>Course</th>
<th>Hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP261</td>
<td>3</td>
<td>EP240</td>
<td>4</td>
</tr>
<tr>
<td>MA240</td>
<td>3</td>
<td>EP262</td>
<td>3</td>
</tr>
<tr>
<td>MA345</td>
<td>3</td>
<td>EP263</td>
<td>4</td>
</tr>
<tr>
<td>PH231/031</td>
<td>5</td>
<td>MA245</td>
<td>2</td>
</tr>
<tr>
<td>Written Expression</td>
<td>3</td>
<td>MA350</td>
<td>3</td>
</tr>
</tbody>
</table>

Total 17 16

THIRD YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Hrs</th>
<th>Course</th>
<th>Hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP361</td>
<td>3</td>
<td>EP340</td>
<td>4</td>
</tr>
<tr>
<td>PH360</td>
<td>3</td>
<td>EP363</td>
<td>3</td>
</tr>
<tr>
<td>SC105*</td>
<td>3</td>
<td>EP380</td>
<td>1</td>
</tr>
<tr>
<td>UI330</td>
<td>3</td>
<td>EP462</td>
<td>3</td>
</tr>
<tr>
<td>Artistic Expression</td>
<td>3</td>
<td>MN350</td>
<td>3</td>
</tr>
<tr>
<td>Literary Expression</td>
<td>3</td>
<td>Behavioral Systems</td>
<td>3</td>
</tr>
</tbody>
</table>

Total 18 17

FOURTH YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Hrs</th>
<th>Course</th>
<th>Hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP372</td>
<td>3</td>
<td>EP374</td>
<td>3</td>
</tr>
<tr>
<td>EP480</td>
<td>1</td>
<td>UI450</td>
<td>3</td>
</tr>
<tr>
<td>PH371</td>
<td>3</td>
<td>Develop of a Major Civ</td>
<td>3</td>
</tr>
<tr>
<td>Economic Systems</td>
<td>3</td>
<td>Political Systems</td>
<td>3</td>
</tr>
<tr>
<td>Living Systems</td>
<td>3</td>
<td>Social Systems</td>
<td>3</td>
</tr>
<tr>
<td>IU/UI3XX</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total 16 15

*Meets Oral Expression; recommended for major

Degree requirements for all students: a minimum of 120 credit hours, completion of University Studies program, career proficiency (CL101-004), Writing Proficiency Exam (WP003), and completion of the Measure of Academic Proficiency and Progress (MAPP) at the freshman and senior levels.

Refer to the Undergraduate Bulletin or DegreeWorks for additional graduation requirements (i.e. minimum GPA and coursework) for your program of study.