\qquad
\qquad

Number Bases

Place all answers in the blank space provided. Calculators are permitted. You are not expected to answer all questions.
\qquad Q1. Write 2023 in base 7.
\qquad Q2. Compute the difference $752_{14}-179_{14}$ leaving your answer in base 14 .
\qquad Q3. Compute the quotient $2512_{6} \div 5_{6}$ leaving your answer in base 6 .
\qquad Q4. Convert $A A A_{16}$ to octal.
\qquad Q5. Find the base b that makes the equation $112_{b}=14$ true.
\qquad Q6. Express $6 B A_{14}$ as a base 10 number.
\qquad Q7. Write the base 4 number 1.23_{4} in octal form.
\qquad Q8. Consider a base 36 system with digits $0,1,2,3,4,5,6,7,8,9, A=10, B=11, \ldots, Z=$ 35. Find $B B B_{36}+T R S_{36}$ leaving your answer in base 36 .
\qquad Q9. Order these numbers from largest to smallest: $13_{10}, 21_{3}, 11011_{2}$
\qquad Q10. Find the largest three digit base 5 number and convert the number to binary form.
\qquad Q11. Determine the base 9 number $\sqrt{1357_{9}}$.
\qquad Q12. Compute the base 5 product $432_{5} \times 234_{5}$.
\qquad Q13. For what value(s) of k will the four digit number $4 k 30_{5}$ be divisible by 3 ?

