\qquad
\qquad

Place all answers in the blank space provided. You are not expected to answer all questions.
Note: || will denote a determinant and [] will denote a matrix.
Q1. Given $A(B+C)=D, A C=\left[\begin{array}{cc}1 & -2 \\ 1 & 2\end{array}\right], B^{-1}=\left[\begin{array}{cc}1 & 3 \\ 2 & -1\end{array}\right]$, and $D^{-1}=\left[\begin{array}{cc}-1 & 0 \\ 1 & 2\end{array}\right]$.
Find A.
Q2. Given $A=\left[\begin{array}{llll}a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p\end{array}\right]$ and $\operatorname{det}(A)=-2$. Find $\operatorname{det}(3 A)$. Q3. Given $A=\left[\begin{array}{cccc}a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p\end{array}\right]$ and $\operatorname{det}(A)=-4$. Find $\begin{array}{cccc}m & n & o & p \\ i & j & k & l \\ e & f & g & h \\ m & n & o & p\end{array}$
\qquad Q4. For what value(s) of s is $\left[\begin{array}{ll}3 & s \\ s & 0\end{array}\right]+\left[\begin{array}{ll}3 & 0 \\ 3 & 3\end{array}\right]$ a singular matrix?
\qquad Q5. Write the two matrices whose determinants need to be evaluated to solve the following set of equations for x by Cramer's Rule.

$$
\begin{gathered}
5 x-7 y=3 \\
-4 x+6 y=5
\end{gathered}
$$

\qquad Q6. Compute the determinant

$$
\begin{array}{cccc}
-4 & 3 & 0 & 0 \\
2 & -1 & 0 & 0 \\
0 & 0 & 8 & 7 \\
0 & 0 & 6 & 5
\end{array}
$$

\qquad Q7. If M is a 357×22 matrix, what must the dimension of the matrix N be if both $M N$ and $N M$ are defined?
\qquad Q8. Find all values of a such that $\begin{array}{cc}-2-a & 4 \\ -5 & 3+a\end{array}=0$

Q9. Let $A=\left[\begin{array}{ll}2 & r \\ s & t\end{array}\right], B=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$, and $C=\left[\begin{array}{cc}0 & 0 \\ -1 & 0\end{array}\right]$. Solve for r, s, and t given that $A B=B A$ and $A C=C A$.
\qquad Q10. Find $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]\left[\begin{array}{lll}-4 & -5 & -6\end{array}\right]$
\qquad Q11. Find $\left[\begin{array}{cc}-1 & -1 \\ 0 & 1\end{array}\right]^{2023}$

